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A two-dimensional (21)) full-wave code, HYPERION, employing a poloidal and toroidal 
mode expansion and including the toroidal terms arising in the wave equation, has been 
developed. It is based on the existing modules developed for the MHD stability codes. The 
plasma response is described by the collisionally broadened cold-plasma conductivity tensor. 
The code retains the E,, component of the electric field, which allows the study of the low- 
density resion of the plasma. A detailed benchmarking of the HYPERION code has been 
done with the existing finite-difference full-wave code ORION. 0 1990 Academic Press, IX. 

1. INTRODUCTION 

The modeling of excitation, propagation, and absorption of electromagnetic 
waves in the ion cyclotron range of frequencies (ICRF) has become a problem of 
considerable importance for the heating of large tokamaks in fusion research. 
Because of the large size of antenna structures and the free-space wavelength in this 
frequency range (f- 30-100 MHz) and because of the presence of wave resonances 
and cutoffs in the plasma, geometrical optics methods fail, and a full-wave sol~~i~~ 
is needed. A rmmber of large codes have been developed to calculate ICRF wave 
heating in fusion devices [l-6]; they employ a variety of numerical methods an 
cover a wide range of detail of the physical models for plasma dispersion and 
absorption. For the most part, these codes have assumed one ignorable coordinate 
(either toroidal or helical), allowing a Fourier decomposition in the ignorable direc- 
tion. The codes can then be classified according to whether the remaining t 
dimensional (2D) problem is solved by finite-difference (or finite-element) met 
Cl, 3] or by a further Fourier decomposition in a nonignorable direction to yield 
a set of coupled equations for each Fourier mode [4-61. In this paper, we describe 
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a new code HYPERION, based on a poloidal mode expansion, and make detailed 
comparisons with an existing 2D finite-difference code, ORION [l]. 

Smithe et al. [4] have developed a poloidal mode expansion code in which the 
geometry is fundamentally cylindrical, with the equilibrium magnetic field in the z 
direction and varying in the x direction as B= B,/(l +x/R,). Although only the 
fast wave is treated in this code, certain effects of the electrostatic Bernstein mode 
on the fast wave are retained by using the warm-plasma conductivity tensor 
expanded to second order in Larmor radius and inserting k, as obtained from the 
warm, uniform plasma dispersion relation into a(k,,, k,). Because of the large 
electron conductivity parallel to B, E,, is assumed to be negligible. This, of course, 
eliminates the cold-plasma slow wave. The coupled radial equations are solved by 
shooting methods. 

Brambilla and Kriicken [S] have developed a very general code based on a 
poloidal mode expansion that includes full toroidal equilibrium geometry, ion 
cyclotron damping through the presence of plasma dispersion functions at 
resonance, and transit time magnetic pumping. By including E,, as a perturbation, 
they have allowed for electron Landau damping. Also, by expanding the plasma 
current response to second order in Larmor radius, they obtain a fourth-order dif- 
ferential system that includes directly the coupling to the slow Bernstein mode. The 
radial equations are discretized using finite elements based on cubic Hermite basis 
functions. Because of the short wavelength of the Bernstein wave, a very dense mesh 
must be used. This severely limits the size and maximum density of tokamaks for 
which convergence can be obtained. So far, the code has been used only for devices 
with circular cross sections. 

Gambier et al. have developed a code that contains physics similar to that in 
Brambilla and Kriicken’s code [S] but is based on a quite different variational for- 
mulation [6]. A quadratic functional is extremalized with respect to a set of linear 
finite-element basis functions. A time history integral is performed over unperturbed 
particle orbits; this permits treatment of the nonlocal effects due to the presence of 
a poloidal field. The codes of both Brambilla and Kriicken [S] and Gambier et al. 
[6] require artificial damping of the Bernstein wave in order to limit the minimum 
wavelengths produced. 

The HYPERION code described here is written in straight-field-line flux coor- 
dinates and retains the E,, component of the wave electric field. This allows the 
study of the low-density edge region of the plasma, which is a critical issue for 
coupling and impurity generation. A unique feature of HYPERION is the removal 
of resonant denominators through multiplication of flj(co2 - 52;). In this way the 
poloidaly varying coefficients can be expressed directly as convolutions of the 
Fourier expansions of the equilibrium quantities, and no additional Fourier trans- 
forms are required. Experience with MHD computations has shown that this 
technique greatly increases speed and accuracy. One of the principal advantages of 
the poloidal mode expansion is that the B .V operator is algebraic rather than dif- 
ferential, which greatly facilitates the inclusion of kinetic and nonlocal effects when 
a poloidal field is present. This work is in progress. This advantage does not enter 
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into the present work since, for the initial version of the code, we consider only the 
cold-plasma conductivity with an effective collisionality to broaden the cyclotron 
resonances. In this paper we concentrate on benchmarking HYPERION against a 
2D finite-difference code, on convergence studies, and on the effects of toroid~l 
geometry on heating results. In Section 2, we present the wave equations in our flux 
coordinate system. In Section 3, we describe the numerical approach taken. In 
Section 4, we make a detailed comparison of the ~YPERION code with N 
and present the results of convergence studies. In Section 5, we investigate the 
importance of toroidicity on fast wave heating for inside and outside antenna 
positions by varying the aspect ratio. 

2. EQUATIONS 

To study the full-wave propagation in a tokamak geometry for the appropriate 
frequency range, the starting point is Maxwell’s equations combined with a model 
for the plasma response, which for this paper is restricted to the co1 
approximation. In this paper, only the linear wave propagation pro 
considered. Under this assumption, the time dependence of the oscillatin 
given by e’““, and the equations are 

V x E = iwB. 

V x B = ./+Iext - ~cI)F,,/L~K. E. 

Mere J,,, is the current density external to the plasma, which in practice is the 
current density at the antenna, and K is the dielectric tensor in the ~~ld-~~~~rn~ 
approximation. In the reference frame in which the equilibrium magnetic field 
is in the z-direction, the tensor K has the form 

with 

where wij = (q~nj)/(c,mj) is the plasma frequency for the species j, o is the 
externally excited frequency, and Qj= (qj /B,,If/m, is the cyclotron frequency for 
species j. Here mj is the mass, qj is the charge, and nj is the density of species j. 
notation and conventions are the same as those used by Jaeger et ab. Ill; more 
details can be found in that work. 

As discussed in Section 1, it is desirable in solving the wave propagation eq~~t~~~ 
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in toroidal geometry and the ICRF to have a good representation for k,,. To do so, 
we need an adequate numerical representation of the operator B,, . V. It is, then, 
appropriate to use a coordinate system (p, 0, c) in which the magnetic field lines are 
straight. In particular, we choose p to be a flux variable, normalized such that p = 0 
is at the magnetic axis and p = 1 at the plasma edge. The third coordinate, <, is the 
usual toroidal angle, and the poloidal angle 8 is chosen such that 

a a 
Be,.V CC gj-d~)eg 

where q(p) is the safety factor. This condition implies that the Jacobian J of this 
coordinate system is given by 

J= R’l, (5) 

where R = R(p, 0) is the radial coordinate in the usual toroidal reference system, 
that is, the distance to the axis of the torus, and 

where the integral is extended to the whole plasma volume. From Eq. (6), it is 
possible to define an average plasma radius consistent with the metric by setting 
a = (2R,Z)‘/‘. This coordinate system has been extensively used in MHD stability 
calculations [7]. The price one pays for the advantages of this coordinate system 
is the nonorthogonality of the p and 0 directions, which makes some of the terms 
in these equations more cumbersome. The equilibrium magnetic field in this coor- 
dinate system can be written as 

Be, = Vi x Vlcl - E;($)VL (7) 

where F($) is the toroidal magnetic field component times R, and $ is the poloidal 
flux function, which in terms of the q profile is given by 

f’(p) 
$(P)= -j; pdpqo. 

The p coordinate is now defined in such a way that the toroidal flux @ is 

@ = $ j; F(P)P dp. (9) 

In the large-aspect-ratio limit, Eq. (9) becomes @ = a2B,p2/2, where B. is the 
magnetic field at the center of the toroidal field coils. Therefore, p can be inter- 
preted as a generalized minor radius, normalized to its value at the plasma edge. 

Equation (1) is a linear system of partial differential equations for the oscillating 
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electric, E, and magnetic, B, fields. A consequence of the axisymmetry of the 
equilibrium fields is that the toroidal wave number IZ is a good quantum ~~rnb~r. 
Therefore, the oscillating fields can be Fourier expanded in the toroidal angle & For 
each field component, A, we can write 

and, in this way, reduce the system of partial differential equations (1 f in p, 8, 5 to 
a set of coupled partial differential equations in p, 8 for each value of II. The set of 
equations for a given IZ value can be written as 

n&B, = coR2( gePB, + geeBe) - i 3 
ap ’ 

ill) 

n&E, = - oR2(gPPBp + gPeBB) - i 1% p ae' Cl%) 

neB, = - co(crePEp + aeeEe $ aercEc) - iJ@R2 - i 3, 
ap 

(131 

1 dB 
neB, = o(aPPEp + upBE, + uP%Ec) + iJpR2 - i - ---r, 

P a$ 
(14) 

,=ia(pBe) 1 aBp - - - - + ~w(&E, + mieEo + drE,) - J’R2, 
P ap P de 

6151 

oJ?EL- 1 ap&? . 
__ + loBe. 

P de P ap 
(14) 

Here, g” is the metric tensor, and for simplicity the subindex rr has been dro 
from the components of the oscillating fields. If T is the matrix associated with the 
coordinate transformation, the dielectric tensor in this coordinate system can 
calculated by (a”) = TKTpl. This leads to the following form for the dielectric 
tensor, 

up” = R2gppK,, 

up0 = R2gp0K, -I- iK, &, 
0 

F 
uPr=gPP!!iK __ 

4 x ROB’ 

ueP = R2gspK, - iK, -.c!..- 
ROB’ 

ueB = R2geeK, + (K, - K,,) 



188 CARRERAS ET AL. 

(pi=!! ig@K, -j&+ K-K,,) > 
9 0 

g<P = -gPP E iK F - 
4 x ROB’ 

& (K, -4) (j&)‘1, 
0 

2 

c@=K,-(K,-K,,) (17) 

where B = IBeg 1. These equations are written in dimensionless form. The lengths are 
normalized to the generalized minor radius a, R to the major radius Ro, the times 
to r. = a/c, the magnetic field to the value of the toroidal field at the magnetic axis 
Bo, and the electric field to E. = aB,/z,. The inverse aspect ratio is E = a/R,. 

A problem with Eqs. (11 t( 16) is the singular behavior of the solutions at the 
two-ion hybrid layer. This singular behavior is a consequence of the cold-plasma 
approximation, which is replaced by conversion to Bernstein modes when finite 
temperature effects are included. A standard way of removing the singularity in the 
cold-plasma approximation is to introduce an effective collisionality v. This can be 
done heuristically by replacing the particle mass mj by the complex number 
mj( 1 + iv/o). The consequences of this prescription have been discussed in detail by 
Jaeger et al. [ 1 ] and by Villard et al. [3]. The effect of v on the numerical results 
and the range of v values possible with the present code are discussed in Section 4. 

For the typical plasma densities in the tokamak interior, the K,, component of 
the dielectric tensor is of the order of mJm, times the other matrix elements. This 
causes the parallel component of the electric field, 

(18) 

to be smaller than the other electric field components by the inverse mass ratio. As 
a consequence, it has been assumed to be zero in most codes analogous to the one 
presented here. However, for low plasma densities, typical of plasma edge, the lower 
hybrid resonance can be in the plasma, and the role of the E,, component becomes 
important. For this reason, the possibility of a nonzero E,, has been retained in the 
present calculations. To avoid numerical pollution due to the disparity of scales in 
the parallel direction, Eq. (13) can be written as 

1 WM 1 aB, -_-- 
P ap 1 - o(fPE, + Z’E, + &EC) pae 

-i Jo 
ext (19) 
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where 

%P = R2gePK, - i 

FK, p2c2 pe Es = R2g88$', - i - - 
R,B q2 g ’ 

$:=!!K,+i----- FK, P pe 
4 RoBqg ’ Pt 

If Eqs. (1 l), (12), (14)-( 16), and (19) are used in solving the wave propa 
problem, the only equation containing K,, is Eq. (15). When the E,, = 0 approx~ma- 
tion is desired, Eq. (15) is replaced by 

Equations (ll), (12), (14), (16), and (19), with either Eq. (15) or Eq. (23), are the 
equations solved by the numerical scheme described in Section 3. 

3. NUMERICAL APPROACH AND CODE I~PL~~NTATIo~ 

Equations (II), (12) (14), (16), and (19), with either Eq. (15) or Eqs. (23) have 
been implemented in a 2D code called HYPERION. This code employs a 
mode expansion and finite differences in the generalized radial coordinate pi It is 
based on existing modules developed for the MHD stability codes [ 8 ] and uses as 
input the tokamak equilibria calculated with the RSTEQ code [93. 

The first step in the discretization of these equations is the expanson of the 
oscillating field components in the poloidal angle vari.able 0. For a general corn 
nent A, the expansion in Fourier harmonics is 

Pl=O VI=1 

Here, the amplitudes A,, are complex numbers, and the maximum number of 
poloidal mode components for the oscillating fields included in the calculation is 

The input equilibrium parameters are the real space coordinates of the flux sur- 
faces, R(p, 0) and Z(p, 19), and the metric elements g”(p, Q). They are given as a 
Fourier series expansion, 

R(P, Q) = 2 R,(P) cosW% (25) 
Vl=O 



190 CARRERAS ET AL. 

- 
Z(p, 0) = 5 Z,(p)sin(mO (26) 

g”(p, f3) = C g#(p) sin(mO), i#j, (27) 

g”(p, e) = c g;(p) cos(me), i=j, (28) 
m=O 

where &? is the maximum poloidal mode number included in the representation of 
the equilibrium fields; in general, it is different from M. All Fourier coefficients in 
Eqs. (25)-(28) are real, and the symmetries of the expansion reflect the assumed 
up-down symmetry of the equilibrium. 

The elements of the dielectric tensor have an equilibrium magnetic field 
dependence in the denominators through the cyclotron frequencies, which can lead 
to singularities for these elements, although they do not correspond to singularities 
of the equations. Direct treatment of these singularities would require the calcula- 
tion of these elements in real space, plus a very accurate Fourier transform back to 
Fourier space. The accuracy required and the number of operations involved could 
be a serious drawback for the Fourier expansion method. An alternative solution 
is to remove these denominators of the o? terms by multiplying Eqs. (14) (15), and 
(19) by the function 

‘=rj {[(-I (g)’ - sZ$f(p, ii)]‘+ 4w2v2 ($)“I; (29) 

here, 52, is just .Qj with B changed to B,. Therefore, 9, is constant. The function 
fis 

(30) 

which an be expressed directly as a Fourier series in terms of the equilibrium 
expansion, Eq. (28). By multiplying the clJ by r, all the singular denominators are 
removed. The as become polynomials on R. Therefore, the c@ can be directly 
expressed in terms of convolutions of the equilibrium parameters, and no Fourier 
transforms are required. This reduces the number of operations to be performed 
and increases the efficiency of the code. 

The next step in the discretizaton of the equations is to set up a finite-difference 
scheme for the generalized radial variable p. A two-grid method is used, with the 
fields Ep, B,, and B, defined on the half-grid points and the fields BP, E,, and E, 
on the integer grid points. In this scheme, Eqs. (12), (15), and (19) are solved on 
the integer grid points, while Eqs. (11 ), (14), and (16) are solved on the half-integer 
grid points. For most of the terms in these equations, there is an exact corre- 
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spondence between variables and equations within this scheme. However, for a few 
terms a linear interpolation from the nearest-neighbor grod points is require 

Boundary values are needed only for the Ee and E, components, since these 
are the only components to appear in radial derivatives at integer grid points. 
A conducting wall boundary condition has been used, 

(EB)mnIp=,=(ES)mnIp=l=O. (31) 

The regularity of the solution at the magnetic axis is imposed by requiring the p 
dependence 

(E,),, z /II”“?’ - ‘I, (32) 

(E,Ln = P’“‘. (33) 

Given these boundary conditions, the discretized system of equations for each value 
of n can be solved by a block-tridiagonal matrix inversion. The matrix has 1%4,+ - 1 
blocks on each diagonal, where &Ii is the sum of the radial grid points on both the 
integer and half-integer radial grids. The odd-numbered blocks contain the equa- 
tions defined on the half-integer grid, and the even-numbered blocks contain the 
integer grid equations. 

Since each matrix is solved only once for each ~1, the speed of the matrix setup 
is more important than the speed of the solver. The software packages 
DECBT/SOLBT [lo] and MA32 [ll] have both been used for this matrix. 
DECBT/SOLBT solves a block-tridiagonal matrix that will fit in the memory of the 
computer. MA32 solves a sparse matrix using disk storage. The matrix setup for 
HYPERION enters the equation term by term, vectorized over the radial dimen- 
sion of each term. Since MA32 writes the matrix to disk row by row, this vectoriza- 
tion cannot be used and the matrix setup is much slower. Both packages give the 
same solution, but the DECBT/SOLBT version runs much faster with the present 
matrix setup. Because the memory required is large and dominated by the size of 
the matrix, which is 3(4- l)[N(2M+ 1)/2]‘, where N is the number of equations, 
the National Magnetic Fusion Energy Computing Center Cray-2 must be used f~po4. 
this problem. 

The density profile, n(p), is a flux function, and for the calculations presented 
here, the profile parameterization is 

n(p) = Iledge. pp~p<L 

The parameter pp represents the plasma radius, outside of which a region of con- 
stant low density, nedgel has been assumed. By including a non-zero edge density, 
nonphysical coaxial modes are eliminated. For the calculations presented here, nedgc 
is chosen sufficiently high as to also eliminate the lower-hybrid resonance. The 
exponent k allows one to change the density gradient in the plasma. 



192 CARRERAS ETAL. 

The antenna is located just inside the low-density region. The current density in 
the antenna is taken in the poloidal direction, and a parameterization similar to the 
one given by Jaeger et al. [ 11 has been used yielding a Gaussian current density 
profile centered at 8 = 0. The current density is 

J,,, = J:,,W (35) 

where 

with 

D = jbo2z R* [1+2;exp(-~)cosmO]do. (37) 

Here L, and L, are the poloidal and toroidal lengths of the antenna, and I, is the 
total current in the antenna. For a given poloidal length of the antenna in real 
space, I,, the poloidal length that appears in Eq. (36) is obtained from the equation 

where the integral is taken over the flux surface p = prr. In cylindrical geometry, 
lp=Lp. 

The main code diagnostics are 2D and three-dimensional (3D) plots of the E,{ 
component; the right and left polarized electric field components, which in the 
straight-field-line coordinate system are given by 

and the local energy deposition rate p, 

+&l-K12(ImKL+ImKx) , 
I 

(40) 
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where Ei/ has been normalized to (BO)*/(pOrO). The integration of !%’ over the 
plasma volume leads to an energy conservation condition, 

4 jj P dp dQ R2(E . J,*,, + E* J,,,) = jj p dp de W(p, 8, n), (41) 

which is a useful condition for checking the numerical convergence of the solution. 
Defining the power in the antenna by unit length as 

P, = 4 !-j p dp dt’ R2E . J,*,, . 

The total power absorbed by the plasma is obtained by adding the real part of P, 
over the n spectrum and in a dimensional form is 

a2Bi 
P=2nR,-CReP,. 

POT0 n 

Dividing the power by (1,)*/2, one obtains the plasma loading resistance 

2P 4nR a2B2 
g&=7= O O 1 Re P,, ; 

0 PO~OG iz 

analogously, the antenna reactance is given by 

4. NUMERICAL TESTS AND CONVERGENCE STUDIES 

To benchmark the HYPERION code, detailed comparisons were made with the 
ORION code [ 11, a 2D, finite-difference, full-wave code for ICRF fields in cylindri- 
cal geometry. The ORION code solves the equations in Cartesian coordinates and 
uses finite differences in the x and y directions. Details of the ORION code are 
given by Jaeger et al. [ 11. 

The cylindrical geometry limit of the HYPERIQN code is set up by taking 
R=R,, g”=6,, and B=B,/[l+~pcos(8)]. Here, di,is t e Kronecker delta. T 
input equilibrium is analytically specified by giving a 4 and a density profile. Com- 
parisons of the two codes have been done for several tokamak parameters. In par- 
ticular, the effects of changing the aspect ratio and the position of the resonance 
surfaces have been studied in detail. The comparisons are illustrated with a case for 
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the parameters of the tokamak fusion test reacter (TFTR), similar to a case studied 
by Smithe et al. [4]. The main parameters are 

B,=4T 

n(O) = 3.3 x 1013 cmp3 

R,=3m 

awall = 1 m 

aplasma = 0.99 m 

a antenna = 0.95 m 

n(H) - = 0.05 
yI = n(D) 

JL = 0.01 
0 

f = 55 MHz. 

The antenna is assumed to be a half-loop antenna with a poloidal width of 7c/2 and 
a toroidal length of 10 cm, and the plasma cross section is circular. 

For these parameters, 3D plots of IE, 1 and [E-j are shown in Fig. 1 for the 
n = 7 and in Fig. 2 for the y1= 22 toroidal components. These results show that the 
wave propagates from the antenna, located at the low-field side, toward the two-ion 
hybrid layer, where it is strongly absorbed. There is some level of transmission 
across the resonant layer, but it is rather small. Both codes reproduce all the 
features of the propagation and absorption, with good agreement between them, 
including the numerical magnitudes of the fields. The predictions of flux-surface- 
average power deposition (Fig. 3) are also very close. 

Aspect ratio and plasma cross-section shaping are important geometrical 
parameters with a significant effect on the wave pattern. When the aspect ratio of 
the configuration and the frequency o are changed so that the minority cyclotron 
resonance remains at a fixed minor radius, the spatial structure of the oscillating 
fields is substantially modified. For an m = 0 antenna and the TFTR parameters 
given above, the @‘contours for aspect ratios of 3 and 12 are shown in Fig. 4. Both 
codes reproduce the main features of the local energy deposition rate, and the 
agreement remains very good. When the effect of the plasma cross-section shaping 
is included, the comparison of the results from the two codes is not so 
straightforward. The reason is that the effect of toroidicity, which is included in the 
HYPERION code, is not retained in the ORION code. Nevertheless, the 
qualitative agreement is good (Fig. 5). 

In studying the numerical convergence of the solutions, there are three main 
parameters to consider: (1) the radial grid spacing dp, (2) the maximum number 
of poloidal modes M, and (3) the effective collisionality parameter v/o. These 
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parameters are strongly correlated, and to obtain a converged solution, the three 
must be properly adjusted. However, for clarity they are discussed here sequentially. 

Let us consider only the v/co parameter. In this context, v serves to resolve the 
singularities introduced by either the cyclotron resonance or hybrid resonances, 
rather than to model actual collisions. The value of v/w is chosen to broaden the 
resonance sufficiently that it can be resolved with finite grid spacing. Despite the ad 
hoc nature of this approach, a considerable body of experience shows that t 
energy absorption and large-scale field structure are determined by the asymptotic 
form of the dispersion and do not depend sensitively on the details of the 
singularity itself. In one-dimensional calculations [ 13 1, where direct comparison 
with full warm-plasma theory is possible, even the k,, dependence of the wave trans- 

HYPERION ORION 

3.06 , 
I 

1.56, h 

FIG. 1. 3D plots of lE+I and /E-J amplitudes in V/m for the n = 7 toroidai component. The 
parameters are those for TFTR given in the text. 

581/88,&14 
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mission and reflection coefficients is reproduced by the collisional model. Of course, 
the partitioning of power between cyclotron damping and mode conversion is not 
obtained. As discussed by Villard et al. [3], for wave frequencies that are not near 
cavity modes, the dependence of the loading resistance on v/o is weak. As an exam- 
ple, the dependence of the loading resistance on v/o is plotted in Fig. 6 for the case 
of Fig. 1. Indeed, as v/w changes by a factor of 10, the resistance changes only be 
a factor of about 2. For v/o > 2 x 10-2, the resonance width is unrealistically broad, 
and the wave is too strongly damped. For v/o < 10-3, the radial and poloidal 
resolution required to obtain a converged solution is too high for the present code 
to be used effectively. Therefore, most of the calculations have been done for the 
range 5 x 10e3 < v/‘/o < lo-*. Hereafter, it is assumed that v/o is in this parameter 
range. 

HYPERION ORION 

FIG. 2. 3D plots of l&l and JE-1 amplitudes for the n=22 toroidal component and the TFTR 
parameters. 
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The dependence of the plasma loading resistance on v/o is stronger for the low- 
field antenna than for the high-field antenna. Apparently, the effective collisio~~~it~ 
v allows for some wave absorption at the main cyclotron resonance, which depends 
strongly on v/co. In the case of a low-field antenna, the wave goes through the 
cyclotron resonance before being absorbed at the two-ion hybrid resonance. 
However, in the case of high-field launching, the wave is absorbed at the two-ion 
hybrid resonance before reaching the cyclotron resonance layer. 

From the discussion of the block-tridiagonal matrix solver, it is clear that it is 
easier to increase he radial resolution (the matrix size is linear with the number of 
radial grid points) than the poloidal resolution (the matrix size is quadratic 
M). Moreover, the radius is divided into regions in such a way that the grid p 
can be concentrated in regions requiring higher resolution. In general, radial grids 
from 60 to 300 points have been used in the calculations discussed here. For 
enough densities or when E,, = 0, those radial grids have resulted in well-converged 
solutions. Under these conditions, 80 radial grid points have been used rQuti~~~~~ 

AVERAGE POWER ABSORBED 

0.047i 
HYPERION 

0.023s 

n=7 
0.0489 

n=7 

ORION 

0.0274 

r 

FIG. 3. Flux-surface-average power deposition profiles for n = 7 and 22 ir, W/m’. 
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with good results. However, when E,, # 0 and the density is low enough that the 
slow wave is not evanescent, finer radial grids are required. The problem of 
convergence under these conditions is rather more complicated and presently under 
study, and it wil not be discussed in this paper. 

One of the most interesting problems in relation to the convergence of the fast- 
wave propagation solution refers to the poloidal mode spectrum. The poloidal 
mode spectrum for the oscillating fields has two main features (Fig. 7), a narrow 
peak at very low m values, generally at m = 1, with a half-width of 3 or 4 m values, 
and a broad background which can go up to m values of the order of 20 to 40. In 
comparing the results for toroidal and cylindrical geometry with the same plasma 
parameters, it is observed that the narrow peak is very similar, but the background 
has a broader spectral width in toroidal geometry (Fig. 7). Detailed analysis of the 
results reveals that the width of the central peak is correlated with the poloidal 
localization of the antenna (Fig. 8), while the background does not seem to be 

ORION 

A=12 

FIG. 4. Local power deposition contours for the TFTR, parameters with an m =0 antenna for 
axpect ratio A = 3 and 12. 
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FIG. 5. Contour plots of the Im E_ amplituce for the n = 7 toroidal component and the TFTR 
parameters. Here the plasma cross section has been shaped with an ellipticity K= 1.8 and 
triangularity 0.3. 

directly affected by it. However, the spectral width of the background is correlates 
mostly with characteristics of the resonance region, which depend on the value of 
v/o, geometry, and poloidal field strength. 

In toroidal geometry, surprisingly few poloidal modes are required to obtain con- 
verged values for the plasma loading resistance (Fig. 9). In general, about IO to 1.5 
modes are required for this case. Figure 9 shows the plasma loading resistance vs 
the antenna resistance for different values of M. It can be seen that the energy con- 
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FIG. 6. Dependence of the loading resistance on the v/o parameter fcr n = 7 toroidal component. 
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FIG. 7. Poloidal mode spectrum of the real part of the radial electric field component. The 
parameters are the same as those in Fig. 1, with and without toroidal effects. 
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FIG. 8. Poloidal mode spectrum of the real part of the radial electric field component for different 
values of the poloidal length of the antenna. The top is a blowup of the low-m range of the spectrum 
at bottom. 
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FIG. 9. Comparison of the plasma loading resistance and the antenna resistance, showing the 
convergence with the number of poloidal mode numbers as well as the increased accuracy of the energy 
conservation condition. 

servation criterion, Eq. (41), gives a good measure of the convergence of the solu- 
tion. The number of modes required depends on the geometry of the resonance as 
well as the sharpness of the resonance as influenced by the effective collisionahty. 
‘In general integrated quantities, such as the radial heating profile or especially the 
total loading presented here, converge more rapidly than the field str~c~~re~ 
themselves. 

5. COMPARISON OF TOROIDAL AND CYLINDRICAL 
GEOMTERY RESULTS 

Comparisons of results for toroidal and cylindrical geometry are always subtle 
because conclusions can depend on how these comparisons are made. 
comparisons have been made for the same aspect ratio, q-profile, anten 
sions in real space, and antenna current. The tokamak parameters for these studies 
are the same TFTR parameters used in Section 4. Because of the small aspect ratio, 
A = 3, it is an interesting case for comparison. Under these conditions, one of the 
main differences between toroidal and cylindrial geometry is the local value of d-,, 
the local toroidal wave number. For a fixed n value, k, = n/R, in cy~i~d~ica~ 
geometry. Therefore, k, has a constant value in the whole plasma region. ~ow~ver~ 
in toroidal geometry, k, =n/R and changes substantially from the inside to the 
outside of the torus. 

For the case of low-field antennas, the spatial structure of the oscillating field for 
a given n does not change signiticantly in going from cylindrical to toroi~al 
geometry (Fig. 10). The plasma loading resistance n-spectrum is somewhat broader 
for the toroidal geometry case, with values about 20% higher at low n (Fig. II). 
This leads to differences of the order of a factor of two for the total loading 
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FIG. 10. IE, 1 in toroidal and cylindrical geometry for the low-field antenna case ith the IZ = 7 
toroidal component. 

resistance. For a high-field antenna, the discrepancy between cylindrical and 
toroidal geometry results is more significant (Fig. 12). In this case, the cylindrical 
geometry results are larger than the toroidal ones; at low y1 the difference is of the 
order of 60%, and for the integrated values the difference is a factor of four. Most 
of the observed differences can be accounted for by the change of k,. If the local 
fast-wave dispersion relation is plotted for a lixed 12 value across the plasma 
diameter for the cylindrical (Fig. 13a) and toroidal (Fig. 13b) cases, one can see 
that the diference in local k, values leads to a smaller evanescent layer at the out- 
side and to a larger one in the inside for the toroidal geometry case. For this 
parameter regime, in which the wavelength of the fast wave is large than or com- 
parable to the distance between the cutoff and the two-ion hybrid resonance, there 
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Plasma loading resistance n-spectrum comparison for the case in Fig. 10. 



FULL-WAVE CALCULATIONS 203 

CYLINDRICAL TOROIDAL 

-0.25 

-I 00 -075 -0.50 -0.25 0 0.25 0.50 075 1.00-1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00 

X X 

FIG. 12. IE, 1 in toroidal and cylindrical geometry for the high-field antenna case with the iz = 7 
toroidal component. 
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FIG. 13. One-dimensional dispersion relations for the fast and siow wave, plotted for fixed n across 
the plasma diameter in cylindrical and toroidal geometry. In the linear dispersion relation for the 
toroidal case, k, has been replaced by n/R. 



204 CARRERASETAL. 

is very little reflection at the cutoff. Therefore, the geometry effects discussed here 
can offset the effect of the cutoff in the case of low-field launching, which can result 
in higher absorption for low-field launching, as discussed by Villard [14]. 

6. CONCLUSIONS 

Fourier expansion in poloidal and toroidal angels has been shown to be an 
efficient numerical technique in solving 2D ICRF wave propagation problems. The 
use of straight-field-line flux coordinates allows one to solve these problems in 
toroidal geometry and for shaped plasmas. At present, the main limitation of the 
method is the size of the matrix to be inverted. 

Toroidal effects in the ICRF calculations have been shown to be important for 
a quantitative estimate of the power deposition. Changes of the order of factors of 
two to five have been found over comparable cylindrical calculations. Also, results 
in toroidal geometry are more sensitive to the antenna position than in cylindrical 
geometry. 

Future work will involve the incorporation of the plasma 2 functions in the 
dielectric tensor, with special consideration to the accurate representation of the k,, 
wave vector. 
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